\(\int (d \cot (e+f x))^n \sin (e+f x) \, dx\) [50]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 73 \[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=-\frac {(d \cot (e+f x))^{1+n} \operatorname {Hypergeometric2F1}\left (\frac {n}{2},\frac {1+n}{2},\frac {3+n}{2},\cos ^2(e+f x)\right ) \sin (e+f x) \sin ^2(e+f x)^{n/2}}{d f (1+n)} \]

[Out]

-(d*cot(f*x+e))^(1+n)*hypergeom([1/2*n, 1/2+1/2*n],[3/2+1/2*n],cos(f*x+e)^2)*sin(f*x+e)*(sin(f*x+e)^2)^(1/2*n)
/d/f/(1+n)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2697} \[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=-\frac {\sin (e+f x) \sin ^2(e+f x)^{n/2} (d \cot (e+f x))^{n+1} \operatorname {Hypergeometric2F1}\left (\frac {n}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(e+f x)\right )}{d f (n+1)} \]

[In]

Int[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

-(((d*Cot[e + f*x])^(1 + n)*Hypergeometric2F1[n/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]*(Sin[e +
 f*x]^2)^(n/2))/(d*f*(1 + n)))

Rule 2697

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*(b*Tan[e + f*x])^(n + 1)*((Cos[e + f*x]^2)^((m + n + 1)/2)/(b*f*(n + 1)))*Hypergeometric2F1[(n + 1)/2,
(m + n + 1)/2, (n + 3)/2, Sin[e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {(d \cot (e+f x))^{1+n} \operatorname {Hypergeometric2F1}\left (\frac {n}{2},\frac {1+n}{2},\frac {3+n}{2},\cos ^2(e+f x)\right ) \sin (e+f x) \sin ^2(e+f x)^{n/2}}{d f (1+n)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 1.43 (sec) , antiderivative size = 264, normalized size of antiderivative = 3.62 \[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=-\frac {8 (-4+n) \operatorname {AppellF1}\left (1-\frac {n}{2},-n,2,2-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) (d \cot (e+f x))^n \sin ^2\left (\frac {1}{2} (e+f x)\right )}{f (-2+n) \left (2 (-4+n) \operatorname {AppellF1}\left (1-\frac {n}{2},-n,2,2-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \cos ^2\left (\frac {1}{2} (e+f x)\right )-2 \left (n \operatorname {AppellF1}\left (2-\frac {n}{2},1-n,2,3-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+2 \operatorname {AppellF1}\left (2-\frac {n}{2},-n,3,3-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )\right ) (-1+\cos (e+f x))\right )} \]

[In]

Integrate[(d*Cot[e + f*x])^n*Sin[e + f*x],x]

[Out]

(-8*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^4*(d*
Cot[e + f*x])^n*Sin[(e + f*x)/2]^2)/(f*(-2 + n)*(2*(-4 + n)*AppellF1[1 - n/2, -n, 2, 2 - n/2, Tan[(e + f*x)/2]
^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^2 - 2*(n*AppellF1[2 - n/2, 1 - n, 2, 3 - n/2, Tan[(e + f*x)/2]^2, -T
an[(e + f*x)/2]^2] + 2*AppellF1[2 - n/2, -n, 3, 3 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*(-1 + Cos[e
 + f*x])))

Maple [F]

\[\int \left (d \cot \left (f x +e \right )\right )^{n} \sin \left (f x +e \right )d x\]

[In]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

[Out]

int((d*cot(f*x+e))^n*sin(f*x+e),x)

Fricas [F]

\[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=\int { \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right ) \,d x } \]

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="fricas")

[Out]

integral((d*cot(f*x + e))^n*sin(f*x + e), x)

Sympy [F]

\[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=\int \left (d \cot {\left (e + f x \right )}\right )^{n} \sin {\left (e + f x \right )}\, dx \]

[In]

integrate((d*cot(f*x+e))**n*sin(f*x+e),x)

[Out]

Integral((d*cot(e + f*x))**n*sin(e + f*x), x)

Maxima [F]

\[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=\int { \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right ) \,d x } \]

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="maxima")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)

Giac [F]

\[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=\int { \left (d \cot \left (f x + e\right )\right )^{n} \sin \left (f x + e\right ) \,d x } \]

[In]

integrate((d*cot(f*x+e))^n*sin(f*x+e),x, algorithm="giac")

[Out]

integrate((d*cot(f*x + e))^n*sin(f*x + e), x)

Mupad [F(-1)]

Timed out. \[ \int (d \cot (e+f x))^n \sin (e+f x) \, dx=\int \sin \left (e+f\,x\right )\,{\left (d\,\mathrm {cot}\left (e+f\,x\right )\right )}^n \,d x \]

[In]

int(sin(e + f*x)*(d*cot(e + f*x))^n,x)

[Out]

int(sin(e + f*x)*(d*cot(e + f*x))^n, x)